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i. Introduction
1

This paper grew out of an attempt to translate into mathematical

formulas what people may argue when faced with a cooperative n-person game

described by a characteristic function.

The basic difficulty in n-person Game Theory is due to the lack of

a clear meaning as to what is the purpose of the game. Certainly, the

purpose is not just to get the maximum amount of profits, because if every

player will demand the maximum he can get in a coalition, no agreement will

be reached. Thus, one decides that the purpose of the game is to reach some

kind of stability, to which the players would or should agree if they want

any agreement to be enforced. This stability should reflect in some sense

the power of each player, which results from the rules of the game.

In this paper, we assume that all the players can "bargain"

together, with perfect communication, and settle at a "stable" outcome

which is based on the "threats" and "counter threats" that they possess.

2.
The set of all the stable outcomes, called the bargaining set, is defined

in Section 2 and some of its properties are discussed. In particular, this

set can always be determined by solving systems of algebraic linear inequal-

ities.

The bargaining sets for the 2- and 3-person games are fully described

(Sections 3, 4, 5) and some cases of 4-person games are treated, in which not

all the coalitions are permissible (Sections 6, 8).

Some counter examples for various conjectures, as well as existence

theorems, are treated in Section 7, and possible modifications are suggested

in Sections 9, 10, and ll..

1Part of this paper was presented in the Conference on Recent

Advances in Game Theory,, Princeton, 1961.
2The definition of the bargaining set appeared in [.il.
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2. The bargaining set.

We shall consider an n-person cooperative game P , described by

its characteristic function. More precisely, a set N = (1, 2, ..., n) of

n players is given, together with a collection (B) of non-empty subsets

B of N , called permissible coalitions. For each B , B E (B) , a number

v(B) is given and it is called the value of the coalition B

For the sake of simplicity, we shall assume throughout this paper

that all 1-person coalitions are in (B) and have a zero value, i.e.,

(2.1.a) i c (B) , v(i) = 0

In addition, we shall also assume that

(2.1.b) v(B) > 0 , B c (B)

It will turn out later that no essential change will occur if we

add to (B) all other non-permissible coalitions, assigning them the value

zero.

A payoff configuration (p.c.) will now be defined as an expression

of the form

(2.2) (x.; ) ( x ; B1, B2, B)l I  x2) ..., .... )

where B1, B2, .... B are mutually disjoint sets of (B) whose union is

N ; i.e.,
m

(2.3) B. (I Bk= , j + k (j B. =N;
j=l

and the xi are real numbers which satisfy

(2.4) Z x. = v(B); j = 1, 2,_ ... , .
iEB.

A p.c. is therefore a representation of a possible outcome of the

game, in which the players part into the coalitions B1 , B2, .. B ,

each coalition shares its value among its members and each player receives

the amount x. , i = 1, 2, ... , n1
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When people are faced with such a game, each one trying to get

as high an amount as he thinks he can get, it is reasonable to expect that

some of the p.c.'s will never form. E.g., one does not expect that a p.c.

will occur with xi < 0 , since the player i0 alone can secure more by

playing as a 1-person coalition. We are willing to make a. strong assump-

tion, namely, that the outcome (2.2) will be a coalitionally rational p.c.

(c.r.p.c. ), i.e., for each B, B c (BI , B CB. , j = 1, 2, ... , m ,

(2.5) zX. > v (B)
ieB 1 -

Thus, we assume that a coalition will not form if some of its members can

obtain more by themselves forming a permissible coalition.

The assumption of coalition-rationality differs from the assump-

tion of belonging to the core by the restricting condition B CB. . This

restriction avoids some of the difficulties which arise when dealing with

games whose core is empty. (See R. D. Luce and H. Raiffa [31.)

In itself, the coalitional rationality assumption is a very

strong one, as it forces the game to be essentially super-additive within

those coalitions which are actually formed. Indeed, a coalition whose

value is less than the value of a subcoalition cannot occur in any c.r.p.c.,

and can as well be declared non-permissible or its Value be replaced by

zero. Moreover, this assumption is open to the same theoretical objections

which are discussed at length in R. D. Luce and H. Raiffa 13]. As a

matter of fact, our theory can be developed without the coalitional ration-

ality assumption,. as indicated in Section 10. Nevertheless, as we are

only interested in "stable" outcomes; we feel it instructive to make this

assumption.

Several phenomena can be observed when watching people who are:

confronted with a game such as; described above. Usually, negotiations

1In R. J. Aumann and M. Maschler [1], a c.r.p.c. is called a p.c.
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start, each one tries to get at least as much as he expects, and at the

same time there is an attempt to enter into a "safe" coalition. This

latter factor applies, in particular, to those coalitions which are planned

to operate for a long period. The search for "safety" gives rise to feel-

ings of sympathy and antipathy which play an important role in the final

decisions. Guarantees of all kinds are demanded, contracts are signed, etc.

If people do not feel safe enough, they often do not enter a coalition even

if they can win more in it.

The demand for safety is usually considered legitimate and a

sound way to convince the partners to get a smaller amount of profit in order

that no one in the coalition will feel deprived. There is a desire for a

"fair play," which can be achieved in various ways. Often, it is accepted

that "if all things are equal," it is "fair" to divide the profits equally.

Sometimes, people share the profits according to some fixed ratio established

by other precedents, etc.

If "all things" are not equal, people will still be happy with

their coalition, if they agree that the "stronger" partners will get more.

Thus, during the negotiations, prior to the coalition formation, each player

will try to convince his partners that in some sense he is strong. This he

can try in various ways, among which an important factor is his ability to

show that he has other, perhaps better, alternatives. His partners, besides

pointing out their own alternatives, may argue in return that even without

his help they can perhaps keep their proposed shares. Thus, a negotiation

quite often takes the form of a sequence of "threats" and "counter-threats,,"

or "objections" against "counter-objections." It is this principle that

we shall try to formulate mhathematically. It seems that a certain kind of

stability is reached if all objections can be answered by counter-objections.

Perhaps it is not enough that any objection by one person could
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be met. It is possible that a subset of the players of a coalition unite

together during the negotiation period and threaten another subset. If

we insist on a strong stability, we have to take care also of such threats.

This, in fact, will be done.,

To be sure, there are other means used during the bargaining

period, such as threats based on the so-called "interpersonal comparison of

utilities," sanctions in other games, propaganda, etc. These will be ignored

in this paper.

The following example will illustrate our purpose. Let n 5 ,

v(l) = v(2) = v(3) = v(123) = 0 , v(12) = 100, v(13) =100 , v(23) = 50

Consider the p.c.

(2.6) (80, 20, 0 ; 12, 5)

Now, player 2 can object by pointing out that in the p.c.

(2.7) (0, 21, 29 ; 1, 23)

he and player 3 get more. Player 1 has no counter objection because he

cannot keep his 80 while offering player 3 at least 29. Thus, (2.6) is

unstable. On the other hand,

(2.8) (75, 25, 0 ; 12, 3)

is stable., An objection of player 2, e.g.,

(2.9) (0, 26, 24; 1, 25),

can be met by a counter objection

(2.10) (75, 0, 25 ; 15, 2);

or an objection of player 1, e.g.,

(2.11) (76, 0, 24 ; 13, 2)

can be met by the counter objection

(2.12) (0, 25, 25 ; 1, 23)

In these counter objections, the threatened player can keep

his share and offer his partners at least what the player who objects
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offered. It will turn out that the only stable p.c. 's in this game are

(2.15) (00,0; 1,2,0); (75,25,0; 12,3); (75,0,25; 13,2); (0,25,25; 1,23)

Let is be said at once that our paper was largely motivated by

the fact that most of our friends, to whom this game was presented, started

their considerations from the p.c, 's (2.8) and (2.10). We tried to find

what characterizes these p~c.'s and how they can be generalized to more

complicated cases.

Let r be a game, as described above. Let K be a non-empty

subset of the set of players N • A player i will be called a partner of

K in a p.c. (z ; ) , if he is a member of a coalition in (Z ;5) which

intersects K . The set P[K ; ( ; )] of all the partners of K in

(. ;) is, therefore,

(2.14) P[K ; (x;8)]-a ( i I i e B. , B. ( K + IJ

Note that K BL K ; (x; )] ; i.e., each member of K is also a partner

of K contrary to everyday usage. K needs only the consent of its part-

ners in order to get its part of xZ

Definition 2.1. Let (z ;) be a coalitionally rational payoff config-

uration (2.2) for a game P . Let K and L be non-empty disjoint subsets

of a coalition B. which appears in (z ;.18) An objection of K against

L in (x ; ) will be a c.r.p.c.

(2.15) (F; ) - Yi. Y2, ...'Yn ;  cl' c2 ...,CIO

for which

(2.16) P1K; ( ;K)] L 4'
(2.17) Yi > xi for all i, i e K,

(2.18) Y, >x for all i , i e P[K;

Verbally, in their objection, players K claim that, without the aid of

players L ((2.16)) , they can get more in another c.r.p.c., ((2.17)) , and
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the new situation is reasonable because their new partners do not get less

than what they got in the previous p.c. ((2.18)) .

Definition 2.2. Let (z ;5) be a coalitionally rational payoff configur-

ation (2.2) in a game P , and let (; 7) be an objection of a set K

against a set L in (z ; ) , K, L C B . A counter objection of L

against K is a c.r.p.c.

(2.19) (1 -(z1, z2, .... z ; m, D2, ... ,k)

for which

(2.20) P[LL; (K;A)] K

(2.21) z. > x. for all i , i E P[L ;
- 1 6

(2.22) z. >yi for all i , i e P[lL ; ( ;. )] i2 P[1K ;(: )•

Verbally, in their counter objection, players L claim that they can hold

their original properties ((2.21)) , promise their partners at least their

original share ((2.21)) , and if they need partners of K in his objection,

they can give them not less than what they were offered in the objection

((2.22). Sometimes, the members of L, have to use the tactics of "divide

and rule" by using members of K. as partners, but they may not use all

membVrs of K ((2.20)) .

Definition 2.3. A c.r.p.c. (.x;5) is called stable if for each objec-

tion of a K against an L in (.z ;Z) there is a counter objection of

L against K . The bargaining set .A of a game r is the set of all

stable c.r.p.c. 's.

Discussion. The feeling of "safety" suggested by this definition lies in

the assurance that all threats within a coalition can be met. It may be

felt, perhaps, that there is a lack of symmetry when comparing (2.16)

and (2.20), but the situation is not symmetric in the first place. An

objection (2.15) can serve, in general, as an Objection of K (or another
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K ) against variousgroups "L" , each oneof which has to have a connter

obj-ection.

To be sure, even if there is a desire for a stability as demanded

in the p.c.'s of the bargaining set, this does not mean that the outcome

will belong to A . A player, e.g., may agree to sacrifice some of his

profits in order to make sure that he enters a coalition. Other factors,

mentioned above, may also cause deviations from . However, if the

demand for stability is strong enogh, we hope that the outcome will not be

too far from A ; in this sense the theory has a normative aspect. More-

over, as the number of the players increases, there arise many possible

threats, and, using the concepts involved in the definition, one may com-

pute and show the players where they are "safe" and what threats they do

possess. This is another normative aspect.
1

The bargaining set is never empty. Indeed, (0,0,...,0;. 1,2,....,n)

always belongs to // .

In a coalition of zero value, any objection (if there is one,) can

be countered by the other players playing as 1-person coalitions.

A dummy always gets zero in a c.r.p.c., therefore he cannot

belong to any objecting K . On the other hand, he can always keep his

zero by playing alone. He can be of no use for any objection or counter

objection, since the same can be effected without his help. Thus, a dummy

has no essential effect on X .

The definition of At does not use "interpersonal comparisons of

utilities" and it is independent of the names of the players.

Theorem 2.1. The bargaining set 11 of a game r , can be represented as

1Results close to the bargaining set have been observed in an
experimental study 1.
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the set of solutions of a conjunctive-disjunctive system of linear inequal-

ities involving the x. as unknowns. It is, therefore, a union of a finite

number of polyhedral conVex sets in the n-space with coordinates

(x ! , x2, .... Xn)

2

Proof. In any finite expression with coordinates which has the form of

quantifiers followed by linear inequalities connected by the words "or"

and "and", the free variables -- if such exist -- which satisfy the

expression are those and only those which satisfy a certain disjunctive-

conjunctive system of linear inequalities. This is a known theorem in

logic, but for the sake of completeness we sketch the proof. It is suffi-

cient to prove the theorem when there is only one quantifier. Moreover, we

may assume that this quantifier is 3 , because V = - . The theorem

now follows from the fact that the projection of a polyhedron is a poly-

hedron.

3. The two-person game.

The bargaining set A1 for the game:

(3.1) v(l) = v(2) = 0 v(12) . a >0

consists of all possible c.r.p.c.'s;. i.e.,

(5.2) (0, 0; 1, 2)

(x!, x2 ; 12) x1 + x2 = a, x, 0 ,x 0

Indeed, there are no possible objections.

1.i.e., a system of linear inequalities connected by the words
"or" and "and".

2We are indebted to Professor M. Rabin and Professor A. Robinson
for pointing this out.
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4. The 3-person game. Permissible coalitions of less than three players.

In this section we shall study the game:

(4.1) v(l) = v(2) = v(3) = 0; v(12) = a; v(23) = b; v(13) : C; ab,c > 0

Theorem 4.1. In the game (4.1), essentially two cases arise-.

Case A. If a, b, c satisfy the "triangle inequality"

(4.2) a < b + c , b < a + c , ;c < a +b ,

then the bargaining set A is:

( 0 0 , 0 ; 1,2, 3)
(a +c- b a +b- c

2 ' 2 0 ;1,
(a +c b c +b- a

2 ' 0 2 1,2)
a +b -c c +b a 123

0 2 ' 2 12

Case B. If, e.g., a > b + c , then the bargaining set */) is:

0 , 0 0 ; 1, 2, 3)

(c < x4 < a-b , a , xI , 0 ; 12, 3(4.4)
c , 0 , 0 ; 13, 2

0 , b , 0 ; 1,23

Before proving this theorem, we shall give some illustrations

which will throw some light on the nature of the bargaining sets.

Example 1. Let a = lO0 , b = 100 , c = 50

The triangle inequality is satisfied, and therefore / is discrete:

(, 0, 0; 14 2, 3), (25, 75, 0; 12, 3) (25, 0, 25; 13, 2) (0, 75, 25; 1,23) }

One can approach this solution also by the following intuitive

argument: Suppose that player 1 receives a , then player 2 gets 100 - a

and he is thus willing to pay player 3 at most 100 (100. ( ) = a • Thus,

player 3 will be willing to pay player I at most 50- I • f 50- a > a



then player 1 will prefer to join player 3. This will cause player 2 to

agree to get less. If 50 - a < u , player 2 will demand more as he will

get more from player 3 if player 1 insists on getting a . Thus an

equilibrium will be reached only if a = 50 - a , in which case x = 25 •

Example 2. The above argument fails in the case a = 20, b = 30, c = 100

Here one obtains a = 45 in which case player 2 will lose money. This he

can avoid by playing alone. Our bargaining set is no longer discrete:

((0, 0, 0; 1, 2, 3) (20 < x1 < 70, 0, 100 - x1 ; 13, 2) (20, 0, 0; 12,0)

(0, 0)30; 1,23)1 • One can reason as follows: Player 1, being in the

coalition 13, will not be satisfied in getting less than 20, since other-

wise he will do better by joining player 2. Similarly, player 3 will demand

at least 30. Fortunately, both demands can be satisfied, and player 2 can-

not cause any harm since he is a weak player.

Example 3. Let a = 100, b = 100, c = 0 . We observe that the bargaining,

set is again discrete: ((0, 0, 0; 1, 2, 3) (0, 100, 0; 12,) (0, 0, 0; 13,.2)

(0, 100, 0; 1, 23)). This solution reflects the character of an "unrestricted

competition" in our bargaining set. Indeed, player 2 can practically

receive the amount 100 because whatever the positive demand of player 1

will be, player 3 will be "satisfied" in getting less,, and vice versa.

One observes that our theory does not take into account the psychological

threat. that player 2 may also "lose" his profit 100, and probably will there-

fore be willing to pay some amount in order to be in a coalition with

player 1 or with player 5. In practical situations several side conditions

may come into consideration such as: 1) It may be customary not to.eter

a coalition unless a certain minimum amount or percentage of profit is

guaranteed in advance. 2) A "Cartel" agreement is decided between player 1

and player 3, in which both of them declare not to enter a coalition with
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player 2 without getting at least a certain amount of profit. 3) There is

enforced a "Cartel" or an "Anti-Cartel" law in the country. 4) It is known,

that in order to ensure a certain profit, one is willing to give up a

certain amount or percentage in order to "push" an equilibrium situation to

his side.

Proof of Theorem 4.1. Certainly, '(0, 0, 0; 1, 2, 3) E A .

Next, let us examine under what circumstances a payoff configura-

tion (x1, x2, 0; 12, 3) can belong to the bargaining set.

It should be coalitionally rational and therefore it must satisfy

(4.5) x1 > 0 , x2 > ; x1 +x 2 = v(12)

Lemma 1. A necessary and sufficient condition that player 1 has no objec-

tion is:

(4.6) xi > v(13)

Indeed, if x1 > v(13) , then player 1 has no objection either by playing

alone (see (4.5)) or by participating in the coalition 13 . If xI < V(13) ,

then player 1 can suggest the objection

v(13) +x x v(13) - xI
(4.7) 2 0 ,2 13, 2

This is a coalitionally rational payoff configuration.

Lemma 2. A necessary and sufficient condition that player 1 has an

objection and to each such objection player 2 has a counter objection, is.:

(4o8) x1 < v(13)

(4.9) xI - x2 > v(13) - v(23) or x2 = 0

Indeed, if (4.8) and (4.9) hold, then, by Lemma :l, player 1 has an objec-

tion. This can only be (see (4.5)) of the form

(4.1) (x! + , 0 , v(13) - xI - ; 15, 2)E
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where e is a sufficiently small positive number. If x2 = 0 , then

(4.10) is itself also a counter objection; otherwise,

(4.11) (0 , v(23) . v(15) +x I + , v(13) I- - ; 1, 23)

is a possible counter objection. By (4.8), player 2 will now receive even

more than x2 ' If (4.8) does not hold, then there is no objection for

player 1, by Lemma 1. If (4.8) holds, but

(4.12) x2 > 0 and x - x2 < v(13) - v(23)

then player 1 can object by (4.10), choosing e so small that

v(23) - v(13) + x1 + c < x2 . Now, player 2 does not have any counter

objection, either by playing alone or by forming a coalition with player 3.

Summing up, and making the necessary permutations, we obtain:

Lemma 3. A necessary and sufficient condition that a payoff configuration

(xl, x2, 0; 12, 3) will belong to the bargaining set , is that x and

x2 will satisfy (4.5) as well as at least one of the following columns:

(4.13) X,.> v(3) x1 < v(13) x1 < V(13)

X2 = 0 X1 - X 2 > v(1) - v(23)

and also at least one of the following columns:

(4.14) x2 > v(23) x2 < v(23) x2 < v(23)

x1 1 0 x2 - x1 > v(23) - v(13)

Taking into account that x+ = a , these inequalities reduce to

(4.5) 0 < x <a <c 0<x < a

c < x x = a 2 -1< X < c

(4.16) x 1 <a-b a-b<x. a-b<x <a -

= 0
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We now use the assumption a, b, c > 0 , and the inequalities

(4.15), (4.16). A detailed calculation yields the following results:

Case A. If a, b, C satisfy the "triangle inequalities" (4.2), then

(4.17) x a ,c - b

1 2

is the only solution.

Case B. If a >b + c , then each x1  satisfying

(4.18) c<x <a- b,

is a solution and there are no other solutions.

Case C. If b > a + c , then x1 = 0 is the only solution.

Case D. If c > a + b , then. xI = a is the only solution.

These are the only possible cases, they exclude each other, and

therefore the proof of Theorem 4.1 has been completed.

5 . The general 3-person game.

Let us add the coalition 123 with its value v(123) = d > 0

to the game treated in Section 4. This coalition will have no effect on

the previous p.c.'s of the bargaining set. Indeed, this coalition cannot

be used for objections and counter objections, because it contains all

the players L and K . Thus, it only remains to find out under what

condition does the p.c. (x!, x2 , x.; 123) belong to the new bargaining

set.

As it should be coalitionally rational, it is necessary that

x1 x2 x3 will satisfy:

(5, ) ,x 2 , x>0 ; x +x 2 >a , x 2 +x>b, x +x5 > ;

xI + x2 + x3 =d



On the other hand, if (5.1) is satisfied, there can be no objection and hence

this pair belongs to A •

In order that the inequalities (5.1) have at least one solution,,

it is necessary and sufficient that

(5.2) d > a, b, c , d > a +b + c

We have thus proved:

Theorem 5.1. In the 3-person game for which

v(1) = v(2) = v(3) = 0 , v(12) = a , v(23) = b , V(13) = c , v(125) = d ,

a, b,. c, d > 0 ,

the bargaining set X consists of the p.c.'s given by Theorem 4.1, and also
of the p.c.'s (x1, x2, x3; 123) which satisfy (5.1). The latter p.c. 's

exist if and only if (5.2) is satisfied.

6. The 4-person game. Coalitions of 1 person and 3 persons.

Consider the 4-person game, in which the permissible coalitions are

all the single-person and the three-person coalitions. Let their values be

v(1) = v(2) = v(3) = v(4) = 0 , v(123) = a , v(124) =b

6 v(134) = c , v(234) = d, a, b, c, d > 0

Evidently (0, 0, 0, 0; 1, 2, 3, 4) belongs to the bargaining set '.
Similar considerations to those which were used in Section 4 lead to the

inequalities which are listed in Appendix 1. These inequalities express a

necessary and sufficient condition in order that the payoff configuration

(xl, x2 x1 ; 123, 4) belongs to the bargaining set.

We omit the calculations, which are somewhat lengthy but easy, and

state the results. There are essentially four different cases:
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Case A. If 2a <b + c +d,

2b<a +c +d ,
(6.2) 2c <a + b +d ,

2d <a + b + c

then the bargaining set is

0 0 0 0 ; 1,2,3,4)

a+ b+ c - 2d a+ b+ d - 2c a+ c+ d - 2b 0 ; 123, 4)
5 5 3

(a+b+ c - 2d a+b+ d - 2c 0 b+ c+ d 2a ; 124, 3)

5 3 3
(6-.3)

a+b+ c -2d 0 a+ c+ d - 2b b+ c+ d- 2a 134, 2)
3 3 3

0 a+b+ d - 2c a+ c+3d - 2b b+ c+ d - 2a 254, 1)

L5 3 3

Case B. If

2a > b + c +d ,

2b <a +c +d , b < c +d,
( 6.4).

2c <a +b +d , c <b +d ,

2d < a +b +c , d < b +C,

then the bargaining set is:

0 0 0 0 ; 1,2,5,4

x a-x 1 - x5  0; 123, 4

(6.5) b + c- d b+ d -c 0 0 ; 124,5 )
2 2

b + c- d. 0 c +d- b 0; 154, 2

2 2

Sb+d- c c+d-b 0; 254,1 )
0 2 2

Here, xI and x5 satisfy the inequalities

(6.6). O< X, a- d, 0< X3'a -b, c aX, +X 5 < a.
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Case C. If

.2a > b + c +d ,

(6.7) 2b <a +c +d, b>c +d,

2c <a +b +d ,

2d <a + b + c,

then the bargaining set is,:

0 0 0 0 1,2,3,4)

x a - x x3  0 ; 123, 4)

(6.8) (c < El < b-d b - El 0 0 ; 124, 3)

c 0 0 0 ; 134, 2)

o d 0 O ; 234, 1)

Here, xI and x3  satisfy the inequalities. (6.6).

Case D. If

2a >b + c + d

(6.9) 2b >a + c +d,

a >b

the bargaining set is the same as in Case C.

Only Case A is completely discrete; all other cases contain the

continuum (6.6). Equations (6.2) can be considered as a generalization of

the triangle inequalities. In fact, it follows from (6.2) that any three

of the numbers a, b, c, d satisfy the triangle inequalities. Moreover,

an equality a = b + c , for example, can occur only if a = d . The

converse does not hold. (E.g., a = 8, b =c = d 5 .)

It is possible to approach the bargaining set in Case A as

follows: If players 1 and 2 get a and B , respectively, then player 3

gets a - a- in the coalition 123 • With these values, player 4 will
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get b - a- in the coalition 124 , c - a + P in the coalition 134 ,

and d - a + x in the coalition 234. In order that no coalition can exert

threats on others, it is necessary and sufficient that

(6.10) b - - = c-a + =d- a. + c.

Hence

(6.11) +b +c- 2d a +b +d- 2c
3 , 3

If

(6.12) 2a > b + c + d , a > b, c, d

then the coalition 123 is strong. and player 4 cannot get more than zero.

If we decide to omit him from the game, and look at each of the remaining

two persons in a coalition which contained him as a new 2-person coalition

which has the same value as before, we get a 3-person game in which

v(123) = a , v(12) = b , v(23) = d , v(13) = c , v(l) = v(2) = v(3) = 0 •

A comparison with the previous two sections shows that the bargain-

ing set of the new game is essentially the same as the game treated in

Cases B, C, D.

(Note that each system (6.4), (6.7), or (6.9) implies a > b, c, d

and (6.7) as well as (6.9) implies b > c +d .)

We can therefore conclude:

Theorem 6.1. A 4-person game, in which the permissible coalitions are all

the 1-person and 3-person coalitions always has a. bargaining set in which

all possible partitions into coalitions appear. The set is discrete if and

only if (6.2) is satisfied. Otherwise the bargaining set is essentially

the same as the one of a full 3-person game obtained from the original one

by deleting the player who does not belong to the maximal valued coalition.

This player always gets 0



Remark 1. The same situations occurs in a 3-person game in which the only

non-permissible coalition is the 3-person coalition. If the triangle inequal-

ity does not hold, then one coalition is strong enough to reduce the game to

a 2-person game with essentially the same bargaining set. The weak player

gets 0.

Remark 2. The conditions (6.12) are necessary and sufficient for the

existence of a c.r.p.c. (X x 0 ; 12, 4) such that~~~~~1,x2, x3' 2,4 uhta

(6.13) xi, x2 ) x3 > 0 , x1 + x2 > b , x1  +x >c , x2 + x5  d

Obviously, such p.c. 's cannot be objected against. However, any c.r.p.c.

in which player 4 is in a 3-person coalition can be objected against by a

c.r.p.c. of the above type, and there is no counter objection unless player 4

gets 0 . Thus, the coalition 123 "dictates" everything; this is why

player 4 cannot claim more than 0

Remark 3. The following ad hoc rule serves for the discrete case: The value

of each coalition is equally divided among its members. If a person enters a

coalition he gets the sum of "his shares" minus the sum of the "shares" which

his partners get from coalitions which do not include him. For example:

a b c
The first player's shares are 5 , 5 , . If he is entering the coalition

d d

123 p his partners have their shares , ) from the coalition 234 , which

is that coalition that does not contain player 1; therefore, this player gets

(6.14) a b c d d
(6.14) Y 3 3 3•

if he enters the coalition 123

The same rule, applies also to the 3-person game, with 1- and 2-

person coalitions., in the discrete case.
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7. Existence Theorems. Counter Examples.

Definition 7.1. A permissible coalition in a game r will be

called effective, if it is possible to divide its value among its members

in such a way that no permissible sub-coalition can alone make more.

Condition (5.2), for example, is a necessary and sufficient condi-

tion that the coalition 123 will be effective in the game treated in

Section 5.

Clearly, we can assume that all subsets of N are permissible

coalitions and that those having a positive value are effective, since we

are dealing only with c.r.p..c.'s. The zero-valued coalitions will be called

trivial coalitions.

The first question which may arise is whether each partition of

the players, in which the only trivial coalitions are 1-person coalitions,

is represented in ) . The answer is no.

Example 7.1. n = 5 , the non-trivial coalitions are 12, 35, 154, 2345.,

with values,:

(7.1) v(12) = 10 , v(35) = 85 , v(134) = 148 , v(234 5) = !60

Consider the coalitionally rational payoff configuration

(7.2) (a, 3, 0, 0, 0 ; 12, 3, 4, 5)

where, of course, 0 a < 10 , ( + P = 10 . Now, player 1 can object by

(7.3) (11, 0, 29, lO8, 0 ; 134, 2, 5) .

This objection is justified -- i.e., player 2 has no counter dojection --

if a < 10 . Indeed, any attempt of player 2 to keep his positive share

will end with a coalitionally non-rational p.c. Thus, (7.2) can belong to

only if a =0, = 0 . But this case is also ruled out, since now

player 2 has a justified objection: (0, 1, 100, 44, 15 ; 1, 2345)

Let P be a game, some of the values of the coalitions of which

are positive. Is it possible that no p.c. belongs to X unless all the
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players get zero? In other words-- is it possible that, in spite of some

coalitions having a positive value, it would be worthless to enter into such

coalitions, if one insits on the stability demanded by the definition

of 9 ? This, in fact) may happen as the following example shows:

Example 7.2.1

v(l, 2, b) = 1 , b 3, 4, 5, 6

v(l, a, b) =1, a =3, 4 ; b = 5, 6.

v(2, p, q) = 1 , p = , q = 4 or p q5, = 6
(7.4)

v(3456) = 1 ,

v(B) = 1 , B contains at least one of the above-
mentioned coalitions.

v(B) = 0 , otherwise

It is a long but easy computation to verify that for this game (. ;. )

implies xi = 0, i = , 2, ...,n.

The following theorem might be helpful in gaining some more

insight into the nature of the bargaining set

Theorem 7.1. Let P be an n-person game, in which 12 is a permissible

coalition. Let 8 °  12, B2, ..., Bm be a fixed partition. Let

(xI, x2 , ... ,Xn;;P°) be a c.r.p.c. and let J be the set of

all the numbers a, , 0 < a 1 < v(12) , such that player 1 has a justified

objection2 against player 2, in (a, v(12)-l, x3' x4' ... , Xn; )

then J is an open set relative to the closed, interv&l. [0, v(12)]

1This game was given by J. von Neumann and 0. Morgenstern [7],
pp. 467-469, as an example of a simple game which is not a weighted
majority game and for which no main simple solution exists.

2By the term "a justified objection" we mean an objection which
has no counter objection.
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Proof. If

(7.5) (x 1 , x2 , ... , xn ; 12, B2 , ... B )

is a coalitionally rational payoff configuration, then so is also

(7.6) (xI + E , x2 - E , 3  Xn ; 12, B2 ,..., B)

provided that -x < e < v(12) -x

If x1 E J , then 5 - v(12) - x1 > 0 , since otherwise player 2

can counter object by playing alone.

Let ( ;f) be an objection of player 1 against player 2;

then y1 > x1 * Let z2 be the maximum that player 2 can get by joining a

coalition such that his partners (if such exist) get what they are supposed

to get in a counter objection. Obviously such a maximum exists, and

z2 < x 2 , because x, e J . Choose c such that

(7.7) -x 1< c < rain(b, Yl- Xl, x2-z 2 )

then x1 + E will also belong to J . Indeed, (7.6) will be coalitionally,

rational; ( ') will remain an objection which is justified.

Thus, if x1 e J , then so are al the points on the interval

[0, x1 + e],

Theorem 7.2. Let P be an n-person game, in which 12 is a permissible

coalition and all the permissible coalitions are 1, 2 and 3-person

-oalitions; then, if (z ;1o) is a c.r.p.c., there exists a c.r.p.c.

(7.8) (tl' t2' x3. x4' "" Xn ; 12, B2, ... , Bm)

such that neither player 1 nor player 2 has any justified objection., Here

So 12,9 B2, ... ,m

Proof. We proved in Theorem 7.1 that the numbers x, , for which player 1

has a justified objection, form an open set T with respect to [0, v(12)]

Similarly, the numbers x for which player 2 has a justified objection form



-23-

an open set T2 with respect to the same-interval (x3, ... , xn  remain

fixed). We shall show that T and T2 are disjoint, from which it will

follow that there is a point t in [0, v(12)] , which is neither in,

T, , nor in T2 , and therefore (7.8) will satisfy the requirements. (None

of the sets is the closed interval because V(12) T , 0 . T2 .)

Indeed, suppose that

(7.9) (y1, a.2' x3' *, Xn ; 12, B2, ... , Bm)

is a c.r.p.c. in which both players have justified objections. Player 1 ,

in his objection, must join a coalition C which contains more than one

person and does not contain player 2. Similarly, player 2 must join, in

his objection, a coalition D which consists of more than one person and

does not contain player 1. If C 0 D = 4 , then player 2's objection can

serve as a counter objection for player i's objection, the latter being

therefore not justified. If C f) D = E + 4 , then E contains one or two

members. Without loss of generality, we can assume that the total amount

that the players in E got in player 2's objection was not less than what they

got from player l's objection. If E contains one member, player 2's objec-

tion is a counter objection to player l's objection. If E contains two

members, this is not always true, because in order to counter object,

player 2 has to modify, perhaps, his payments to the members of E • By

doing so, a payoff configuration may result, which is not coalitionally

rational; i.e., one player in E and player 2 can now make more by together

forming a coalition. But if this is the case, then this coalition can serve

as a counter objection.

Remark. The theorem fails to hold if we remove the restriction on the

number of the players in the permissible coalitions, A Counter example is

provided in Example 7.1.



Application. Suppose that each one of two men got a license to build a

gasoline station. Each one considers the possibility of taking at most

two partners. They expect various profits from the corresponding possible

coalitions. The other partners do not have licenses. Of course, the two

men consider also their joint coalition. Under these assumptions,

Theorem 7.2 says that the coalition of the two licensees is represented in

the bargaining set.

8. The four-person game in which only 1. and 2-person coalitions are

permissible.

The inequalities which determine under what condition is

(x 1 , x2 , x, x4 ; 12, 34) in , for the game:

v(1) = v (2) = v(3) v v(4) O , v(12) = a , v(23) =b , v((34) = c
(8.1) 

v(13) =-d , v(24) =e , v(l4) = f , a, b, c, d, e,, f>O

are given in Appendix 2.

Theorem 7.2 ensures that any partition which contains only one

2-person coalition is represented in .. . We shall now study the case of

partitions into two couples. Our object is to prove that such partitions

appear in k . It turns out that this can be proved even if we limit

ourselves to maximal partitions, i.e., to those partitions, the sum of the

values of the coalitions in which, is maximal. This restriction helps us

by reducing the number of inequalities which need to be examined.

Theorem 8.1. Let P be the game (8.1), where

(8.2) a +c >d +e , a +c >bb +f;

then there always exists a p.c. (x1 , ' x5, x4 ; 12, 34) in the bargaining

set.
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Proof. We omit the calculations, but state the various cases.

Case A. If

(8.3) a <b +d , b <a+d., d <a +b , 2c >b +d -a,

then

(8.4) (a+ d-b a+ b-d b+ d-a 2c+ a-b-d 1 234,
• 2 ' 2 ' 2 ' 2 1234 ,..

If I

(8.5) a <b +d, b <a +d , d < a +b, 2c <b +d -a,

then

(8.6) (a+d - b a +b - d c , 0 ; 12, 4)2 2 ,c ;1,3

Case B. If

(8.7) a>b +d , c >d +f ,

then

(8.8) (a, a - d, 0, c ; 12, 34) e

Case C. If

(8.9) a >b + d ,. f > c + d , b + C > e,

then

(8.1o) (f - c, a+ c- f, 0, c ; 12, 34) E

(Indeed, (8.9) and (8.2) imply c > e - b > e - (a + c - f) , hence

a + 2c > e + f . The rest follows directly.)

If

(8.11) a >b +d , f >c +d , e >b + c,

then

2 1 0 , e 1 2, 34 IE .

(Indeed, (8.2) and (8.11) imply 2d + e < d + a + c <a + f . Also

2b +f <b +a +c <a +e

Case D. If

(8.13) a>b:,'d ,5 1 >f *c , b +c.>e ,

then
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(8.14) (a. b, b, 0, c ; 12, 34),

if

(8.15) a >b +d, d >f + c, e >b +c ,

then

(8.16) (a + c . e , e - , 0 , c ; 12, 34) e

Case E. If

(8.17) d >a +b , d >c +f ,

then

(8.18) (a, 0, d- a, c + a -d ; 12, 34) E

All other cases are either not maximal partitions, or they can be reduced

to these cases by permuting the players:

(8.19) 1 <-> , 2 <-> 4

9. The restricted bargaining set.

In a given game there are in general many stable p.c.'s. Though

we do not possess a criterion for choosing between them, there are cases

in which it is clear that some p.c. 's in k are "better" than others. We

therefore suggest that the latter should be deleted from J, thus giving

rise to the restricted bargaining set

A p.c. ( ;,) in k should be deleted if one of the following

cases occurs:

(i) There. exists in R a p.c. (x*;N*) with

(9.1) x.* > x. ; i =1,2, .,., n

(ii) There exists in M a p.c. (x **;8 **) , where the coalitions in

are unions of coalitions in j , such that

(9.2) x.** > x.

for all the players i which belong to a union of more than one coalition

of and
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(93) x.** > x.
2. -1

for all the other players.

One sees that in the examples given in the previous sections, only

those coalitions which have relatively big values (if such exist), will

appear in *

10. Possible modifications.

Inasmuch as our theory tries to cope with "reality," it is

flexible enough to allow for some modifications.

For instance, if players are faced with the game treated in

Example 7.2, they may claim that the demand for stability is too strong.

They would rather relax this demand and still gain something from the game.

One can then offer them the following definition of a bargaining

set -R ,

Definition 10.1. A c.r.p.c. (X;b) belongs to the bargaining set

if for any objection K against L , there is somebody in L who can

counter object.

According to this definition, each player in a coalition B.

which contains K , who does not belong to the partners of K, is required

to be able to counter object; (but several such players may perhaps be

unable to protect their shares simultaneously). Clearly, the resulting

bargaining set , includes .k, since the number of sets which is

required to counter object is reduced. In this case, e.g., the players

of the game treated in Example 7.2 may agree to

(10.1) ( , 1, 0, ,0 0 ; 123, 4., 5, 6)

which belongs to "

In some other real-life cases, one can estimate and tell in.
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advance which coalitions may object and which coalitions may counter object.

This leads to various bargaining sets and brings us to the circle of ideas of the

*-stability. (See Luce and Raiffa [3], pp. 163-168, 174-176, 220-236.)

One may limit K to be always one-person and L to be the

remaining members of the coalition, except for K's partners. This type

of stability of one against the rest, which generates a bargaining set

is still different from the. stability demanded in IV as the following

example shows:

Example 10.1. Consider the game:

(10.2) n = 5 , v(i) = 0 , v(123) = 30 , v(2 4 ) = v(35) = 50 ,

v(1245) = v(1345) = 6o

Let

(10.3) (x; ) (10, 10, 10, 0, 0 ; 123, 4, 5)

If K = 1, 2, or 3, then the remaining players which belong to the same

coalition and are not among his partners can always counter object; but the

objection for K = 23 ,

(10.4) (0, 11, 11, 39, 39 ; 1, 24, 35)

has no counter objection because player 1 cannot keep his profits. Thus

X ;B), - 2 but not to

It is easy to show that lkC

Sometimes people would like to feel safe not only within their

coalitions but also from "outside" threats. It may happen, e.g., that

several players from various coalitions will threaten together other

people from these coalitions. A reasonable way to cope with this strong

demand for stability would be to allow K aid L to belong to several

coalitions, provided that K and L are required to intersect the same

coalitions. This will bring us to a bargaining set which is included
%0
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in . Let us remark that = for the 2- and 3-person games, as

well as for the 4-person game with only 1-, 3-,, and 4-person coalitions

permissible. If n = 4 , where l- and 2-person coalitions are permissible,

one has to replace the inequalities of Appendix 2 by those listed in

Appendix 3. Fortunately, these inequalities are satisfied in all the

examples given in Section 8, and therefore Theorem 8.1 is valid if one

replaces by

Finally, we would like to question the assumption of coalitional

rationality. If we drop this condition, we may arrive at negative values

in the bargaining set, but this does not have to bother us, since

(0, 0, ..., 0 ; 1, 2, ..., n) will certainly remain in the bargaining set,

and therefore we can demand that the restricted bargaining set will contain

only individually rational p.c.'s. However, we shall show in Example, 10.2

that the resulting restricted bargaining set may still contain non-

coalitionally rational p.c.' s.

Example 10.2. Let P be the game

(10.5) v(i) = 0 , v(12) = v(45) = v(46) = v(56) = v(123) = 30 , v(5 4 ) l 10

In this game, the non-coalitionally rational p.c.

(10.6) (10, 10, 10, 0, 15, 15 ; 123, 4, 56)

is stable if one drops the condition of coalition rationality. In fact, it

then belongs to the restricted bargaining set, since otherwise there exists

a p.c. (z ;$) in the bargaining set with

6
(10.7) E x. > 60

i=l 1

This can only occur if the coalition 34 is formed. Since, in addition,

x3 _>1 0 , x4 > 0 , player 3 gets 10. This is impossible because in this

case, player 4 has a justified objection, due to the fact that x1 + x2 = 50
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We have thus shown that the restricted bargaining set may contain

a non-coalitionally rational p.c., if this condition is dropped from the

definition of the bargaining set.

11. Concluding remarks.

Perhaps, the nearest to our theory is W. Vickrey's concept of

self-policing patterns [6]. His objections -- called "heretical imputations" --

are similar to ours; however, his counter objections -- named "penalizing

policing imputations" -- are quite different.

Both the heretical and the penalizing policing imputations are

in Vickrey's case imputations, whereas this is not the case in our theory.

His penalizing policing imputation insists that at least one member of the

"heretical coalition" is punished, whereas we only demand that set L will

be able to hold onto its property. However, the main difference lies,

perhaps, in the fact that Vickrey is looking for a set of imputations --

1
"self-policing patterns" -- which are stable as a whole, while our bargain-

ing set consists of payoff configurations, each one of which is stable in

itself.

In many practical situations, the characteristic function is not

the best way to describe a game. It would rather be better to apply the

"Thrall characteristic function" (see R. M. Thrall [5]), which associates

with each coalition-structure a value for each coalition appearing in that

structure. One can try to define the concepts of objections and counter

objections, for such cases, and it is possible to do so in various ways.

It is also possible to apply the notions described in this

paper to the Aumann-Peleg characteristic function for cooperative games

without side payments [2], essentially without change.

Finally, we should like to point out that our theory gives in

1 In particular, he looks for "strong solutions-.
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many cases answers similar to those appearing in classical theories. Thus,

e.g., the bargaining set in the discrete case of the 3-person non-zero-sum

1
game consists essentially of the "central" three points of the non-

discriminatory von Neumann-Mbrgenstern solution (see [7], PP. 550-554),

but does not contain the additional. "wiggles" that occur in their solution.

The bargaining set for the non-discrete case is essentially the core. This

suggests a pattern in which the bargaining set forms the "central" or

"intuitive" part of a von Neumann-Mrgenstern solution, whereas the

"complications" disappear.

I

Clearly, one has to modify the characteristic function in the
obvious, way so as: to get super-additivity.
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Apendix 1

Let P be a 4-person game, the coalitions of which, and their

values, are given by (6.1). In order that the pair (xi, x2, x3, 0 ; 123, 4)

belongs to the bargaining set A , it is necessary and sufficient that

(Al.1) 0 < x 1 , 0 < x3 , xI + x3 < a , x2 = a - x - x5 3

and that at least one inequality (or equality) in each of the following

lines should be satisfied.

x1 + x3 > c 2x1 + x3 > a + c - d x1 + x = a

x <a -b x5 -x 1 <d - b x 0

x 1<a - d 2x +x3 <a + c - d x 1 0

x3 < a -b x1 + 2x3 < a + c - b x = 0

xI +x 3 > c x1 + 2x3 ? a + c - b x1 +x 3  a

x a -d x -x > d -b x = 0
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Appgendix 2

Let r be a 4-person game, the coalitions of which, and their

values, are given in (8.1). In order that the pair (x , x2, x3' x4 ; 12, 34)

belongs to the bargaining set L , it is necessary and sufficient that

(A2.1) 0<Xl<a, 0<x c, x1 +x = a , x+ = c

and that at least one inequality (or equality) in each line should be

satisfied.

If the partition 12, 54 is maximal (in the sense of (8.2 , the

last column can be omitted.

xI = a x1 + x3 > d 2x, a + d - b x1 + x3  a + c -e

x 1 = a x 1 f x f- c 2x 1 > a + f - e x1 - x3 >a - b

x = 0 x1 - x3 < a - b 2x, a +d - b x - x f - c5- 1- 1 5-

xI = 0 xI + x3 < a + c -e 2x 1< a + f - e x1 + x3 < d

x3 =c xI + x3 > d f x I + x3 > a + c e

x3 =c xI - x3 < a - b 2x3 > c +b -e xI - x3 < f - c

x3  0 x1 - x >f- c 2x3 < c +d- f x1 - x. >a- b

x= 0 x1 x3 < a + c-e 2x <b+c-e x +x 5< d
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Appendix 3

The following inequalities replace those given in Appendix 2, if
one desires that (Xl, x2, x5, x4 ; 12, 34) shall belong to Y (See

Section. 10.)

Again, at least one inequality in each line should be satisfied,

as well as those given by (A2.1).

xI +x 5 >d xI =a x5 :c x1 + x >a +c - e

2x > c + d -f 2x > a + d b

X -x3 > f -c x = a x = 0 x -x < b -a

2x < c + d -f 2x > a + f -e

x x3 < a -b xI =0 x =c X1 - x < f -c

2x3  >b + c -e 2x 1< a + d -b

x +x 3 < a + c ex =0 x =0 xI + x3 <d

2x3 < b +c - e .2x <a + f - e
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